4 resultados para plant materials

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study investigated the site of release of a model vaccine antigen from plant cells and the corresponding induced immune response. Three plant tissues (leaf, fruit and hairy root) and two formulations (aqueous and lipid) were compared in two mouse trials. A developed technique that enabled detection of antigen release by plant cells determined that antigen release occurred at early sites of the gastrointestinal tract when delivered in leaf material and at later sites when delivered in hairy roots. Lipid formulations delayed antigen release from all plant materials tested. While encapsulation in the plant cell provided some protection of the antigen in the gastrointestinal tract and influenced antigen release, formulation medium was also an important consideration with regard to vaccine delivery and immunogenicity. Systemic immune responses induced from the orally delivered vaccine benefited from late release of antigen in the mouse gastrointestinal tract. The influences to the mucosal immune response induced by these vaccines were too complex to be determined by studies performed here with no clear trend regarding plant tissue site of release or formulation medium. Expression and delivery of the model antigen in plant material prepared in an aqueous formulation provided the optimal systemic and mucosal, antigen-specific immune responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ribosome inactivating proteins (RIPs) from plants possess RNA N-glycosidase activity that depurinates the major rRNA, thus damaging ribosome in an irreversible manner and arresting protein synthesis. RIPs occur in fungi, bacteria and plants and are abundant in angiosperms, where they appear to have defensive role. RIPs are presently classified as rRNA N-glycosidase in the enzyme nomenclature (EC 3.2.2.22) and do exhibit other enzymatic activities such as ribonuclease and deoxyribonuclease activities. RIPs are classified into two groups based on their difference in their primary structure. Type I RIPs consist of a single polypeptide chain of approximately 26–35 kDa that possess an RNA N-glycosidase activity. These proteins have attracted a great deal of attention because of their anti-viral, anti-tumor, and anti-microbial activities, which is useful in medical research and development. Here, we describe isolation of a novel protein from Momordica sp, a highclimbing vine from family Cucurbitaceae which is native to the tropical regions of Africa, Asia, Arabia and Caribbean. The purified protein has been verified by SDS-PAGE and mass spectrometry to contain only single chain Type-1 ribosome inactivating proteins (RIPs). With present experiments, we determined the presence of RIPs in edible plant materials, including some that are eaten raw by human beings. The novel protein is further characterized to validate its therapeutic potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reuse options were investigated for drinking water sludge. Research found sludges could be included with raw materials in brick and cement manufacturing with minimal impact. Poly-aluminium chloride sludge was found to an excellent adsorbent of phosphorus from wastewaters thus indirectly reducing potential algal blooms in our rivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen production by air separation is of great importance in both environmental and industrial processes as most large scale clean energy technologies require oxygen as feed gas. Currently the conventional cryogenic air separation unit is a major economic impediment to the deployment of these clean energy technologies with carbon capture (i.e. oxy-fuel combustion ). Dense ceramic perovskite membranes are envisaged to replace the cryogenics and reduce O2 production costs by 35% or more; which can significantly cut the energy penalty by 50% when integrated in oxy-fuel power plant for CO2 capture. This paper reviews the current progress in the development of dense ceramic membranes for oxygen production. The principles, advantages or disadvantages, and the crucial problems of all kinds of membranes are discussed. Materials development, optimisation guidelines and suggestions for future research direction are also included. Some areas already previously reviewed are treated with less attention.